On unique minimum dominating sets in some Cartesian product graphs
نویسندگان
چکیده
منابع مشابه
On unique minimum dominating sets in some Cartesian product graphs
Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.
متن کاملOn unique minimum dominating sets in some repeated Cartesian products
Unique minimum dominating sets in the Cartesian product of a graph and a Hamming graph are considered. A characterization of such sets is given, when they exist. A necessary and sufficient condition for the existence of a unique minimum dominating set is given in the special case of the Cartesian product of a tree and multiple copies of the same complete graph.
متن کاملBlock graphs with unique minimum dominating sets
For any graph G a set D of vertices of G is a dominating set, if every vertex v∈V (G)− D has at least one neighbor in D. The domination number (G) is the smallest number of vertices in any dominating set. In this paper, a characterization is given for block graphs having a unique minimum dominating set. With this result, we generalize a theorem of Gunther, Hartnell, Markus and Rall for trees. c...
متن کاملA Review on Graphs with Unique Minimum Dominating Sets
A dominating set for a graph G is a subset D of V such that every vertex not in D is adjacent to at least one member of D. This paper deals with some of the graphs having unique minimum dominating sets. We also find a unique minimum dominating sets for block graphs and maximum graphs.
متن کاملOn Minimum Identifying Codes in Some Cartesian Product Graphs
An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code, or ID code, in a graph G is called the ID code number of G and is denoted γ(G). In this paper, we give upper and lower bounds for the ID code number of the prism of a graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2015
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.1822